什么是1+2问题 1+2=?这个问题的答案是什么
求采纳啊 不懂可以追问
这个1+2的难题 指的是哥德巴赫猜想 哥德巴赫的问题可以推论出以下两个命题,只要证明以下两个命题,即证明了猜想:
(a) 任何一个>=6之偶数,都可以表示成两个奇质数之和。 (b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。
这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。到了20世纪20年代,才有人开始向它靠近。1920年,挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比6大的偶数都可以表示为(9+9)。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫猜想”。1966年,我国年轻的数学家陈景润,在经过多年潜心研究之后,成功地证明了"1+2",也就是"任何一个大偶数都可以表示成一个素数与另一个素因子不超过2个的数之和"。这是迄今为止,这一研究领域最佳的成果,距摘取这颗"数学王冠上的明珠仅一步之遥,在世界数学界引起了轰动。但这一小步却很难迈出。“1+2”被誉为陈氏定理。
这种难题 证到现在也没有证完 所以你要好好学习 争取早日破解这个世界难题
所谓1+2=3指的是任何大于等于6的偶数均可分解为两个自然数的和 其中一个是质数 另一个为质数或者可以分解为两个质数的积其他1+1 2+2 1+3 均可如此推论
陈氏定理是中国数学家陈景润于1966年发表,1973年公布详细证明方法。这个定理证明任何一个足够大的偶数都可以表示成一个素数和一个半素数的和,也就是我们通常所说的“1+2”。1742年德国人哥德巴赫给当时住在俄国彼得堡的大数学家欧拉写了一封信,在信中提出两个问题:第一,是否每个大于4的偶数都能表示为两个奇质数之和?如6=3+3,14=3+11等。第二,是否每个大于7的奇数都能表示3个奇质数之和?如9=3+3+3,15=3+5+7等。这就是著名的哥德巴赫猜想。
“s+t”问题
到了20世纪20年代,才有人开始向哥德巴赫猜想靠近。1920年挪威数学家布朗用一种古老的筛选法证明,得出了一个结论:每一个比较大的偶数都可以表示为九个质数的积加上九个质数的积,简称9+9。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了哥德巴赫猜想。
目前最佳的结果是中国数学家陈景润于1966年证明的,称为陈氏定理:“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。”通常都简称这个结果为大偶数可表示为 “1 + 2”的形式。
在陈景润之前,关于偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称“s + t”问题)之进展情况如下:
1920年,挪威的布朗证明了‘“9 + 9”。
1924年,德国的拉特马赫证明了“7 + 7”。
1932年,英国的埃斯特曼证明了“6 + 6”。
1937年,意大利的蕾西先后证明了“5 + 7”, “4 + 9”, “3 + 15”和“2 + 366”。
1938年,苏联的布赫夕太勃证明了“5 + 5”。
1940年,苏联的布赫夕太勃证明了“4 + 4”。
1948年,匈牙利的瑞尼证明了“1 + c”,其中c是一很大的自然数。
1956年,中国的王元证明了“3 + 4”。
1957年,中国的王元先后证明了 “3 + 3”和“2 + 3”。
1962年,中国的潘承洞和苏联的巴尔巴恩证明了“1 + 5”, 中国的王元证明了“1 + 4”。
1965年,苏联的布赫 夕太勃和小维诺格拉多夫,及 意大利的朋比利证明了“1 + 3 ”。
1966年,中国的陈景润证明了 “1 + 2 ”。
由于陈景润的贡献,人类距离哥德巴赫猜想的最后结果“1+1”仅有一步之遥了。但为了实现这最后的一步,也许还要历经一个漫长的探索过程。有许多数学家认为,要想证明“1+1”,必须通过创造新的数学方法,以往的路很可能都是走不通的。
从1920年布朗证明"9+9"到1966年陈景润攻下“1+2”,历经46年。自"陈氏定理"诞生至今的30多年里,人们对哥德巴赫猜想猜想的进一步研究,均劳而无功。
布朗筛法的思路是这样的:即任一偶数(自然数)可以写为2n,这里n是一个自然数,2n可以表示为n个不同形式的一对自然数之和: 2n=1+(2n-1)=2+(2n-2)=3+(2n-3)=…=n+n 在筛去不适合哥德巴赫猜想结论的所有那些自然数对之后(例如1和2n-1;2i和(2n-2i),i=1,2,…;3j和(2n-3j),j=2,3,…;等等),如果能够证明至少还有一对自然数未被筛去,例如记其中的一对为p1和p2,那么p1和p2都是素数,即得n=p1+p2,这样哥德巴赫猜想就被证明了。前一部分的叙述是很自然的想法。关键就是要证明'至少还有一对自然数未被筛去'。目前世界上谁都未能对这一部分加以证明。要能证明,这个猜想也就解决了。
然而,因大偶数n(不小于6)等于其对应的奇数数列(首为3,尾为n-3)首尾挨次搭配相加的奇数之和。故根据该奇数之和以相关类型质数+质数(1+1)或质数+合数(1+2)(含合数+质数2+1或合数+合数2+2)(注:1+2 或 2+1 同属质数+合数类型)在参与无限次的"类别组合"时,所有可发生的种种有关联系即1+1或1+2完全一致的出现,1+1与1+2的交叉出现(不完全一致的出现),同2+1或2+2的"完全一致",2+1与2+2的"不完全一致"等情况的排列组合所形成的各有关联系,就可导出的"类别组合"为1+1,1+1与1+2和2+2,1+1与1+2,1+2与2+2,1+1与2+2,1+2等六种方式。因为其中的1+2与2+2,1+2 两种"类别组合"方式不含1+1。所以1+1没有覆盖所有可形成的"类别组合"方式,即其存在是有交替的,至此,若可将1+2与2+2,以及1+2两种方式的存在排除,则1+1得证,反之,则1+1不成立得证。然而事实却是:1+2 与2+2,以及1+2(或至少有一种)是陈氏定理中(任何一个充分大的偶数都可以表示为两个素数的和,或一个素数与两个素数乘积的和),所揭示的某些规律(如1+2的存在而同时有1+1缺失的情况)存在的基础根据。所以1+2与2+2,以及1+2(或至少有一种)"类别组合"方式是确定的,客观的,也即是不可排除的。所以1+1成立是不可能的。这就彻底论证了布朗筛法不能证"1+1"。
由于素数本身的分布呈现无序性的变化,素数对的变化同偶数值的增长二者之间不存在简单正比例关系,偶数值增大时素数对值忽高忽低。能通过数学关系式把素数对的变化同偶数的变化联系起来吗?不能!偶数值与其素数对值之间的关系没有数量规律可循。二百多年来,人们的努力证明了这一点,最后选择放弃,另找途径。于是出现了用别的方法来证明哥德巴赫猜想的人们,他们的努力,只使数学的某些领域得到进步,而对哥德巴赫猜想证明没有一点作用。
哥德巴赫猜想本质是一个偶数与其素数对关系,表达一个偶数与其素数对关系的数学表达式,是不存在的。它可以从实践上证实,但逻辑上无法解决个别偶数与全部偶数的矛盾。个别如何等于一般呢?个别和一般在质上同一,量上对立。矛盾虽然存在,但是迟早哥德巴赫猜想会在理论上得到证实,只要我们一同努力不久的将来就会成为一条真正的定理。
"1+2"问题指的是哥德巴赫猜想。
1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被1和它本身整除的数)之和。如6=3+3,12=5+7等等。公元1742年6月7日哥德巴赫写信给当时的大数学家欧拉,欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。从哥德巴赫提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, ……等等。有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但严格的数学证明尚待数学家的努力。
从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可即的"明珠"。 人们对哥德巴赫猜想难题的热情,历经两百多年而不衰。世界上许许多多的数学工作者,殚精竭虑,费尽心机,然而至今仍不得其解。
到了20世纪20年代,才有人开始向它靠近。1920年挪威数学家布朗用一种古老的筛选法证明,得出了一个结论:每一个比大偶数n(不小于6)的偶数都可以表示为九个质数的积加上九个质数的积,简称9+9。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了哥德巴赫猜想。
目前最佳的结果是中国数学家陈景润于1966年证明的,称为陈氏定理:“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。”通常都简称这个结果为大偶数可表示为 “1 + 2”的形式。
你是否需要了解?
谁能告诉我 哥德巴赫猜想 的1+2到底是什么意义
1966年,中国数学家陈景润证明了"1+2",即"任何一个大偶数都可以表示成一个素数与另一个素因子不超过2个的数之和"。这一证明距离猜想成立即"1+1"仅一步之遥。这意味着在陈景润的成果之前,数学界已经接近解决这一著名猜想。哥德巴赫猜想(Goldbach Conjecture)大致可以分为两个猜想。其中,第一个...
陈景润的1+2是什么意思?
陈景润的“1+2”是指任一充分大的偶数都可以表示成二个素数的和,或是一个素数和一个半素数的和。原初猜想的现代陈述为:任一大于5的整数都可写成三个质数之和。对于偶数,n=2+(n-2),n-2也是偶数,可以分解为两个质数的和;对于奇数,n=3+(n-3),n-3也是偶数,可以分解为两个质数的和...
(1+2)是什么意思
详细解释如下:一、数学表达式解析 在数学中,表达式 是一个简单的加法运算。这里的“+”符号表示加法运算,它用于计算两个或多个数字的总和。在这个特定的例子中,数字 1 和数字 2 相加的结果是 3。因此, 的意思是数字 3。二、表达式的计算过程 计算 的过程非常简单。首先,我们识别这是一个加...
1+2是个什么意思?
大专院校的1+2的意思:1+2是1年预科,2年专业学习。预科是系统学习一些基础知识,打点底子。两年的专业学习,首先要看学习态度以及是否对所学专业爱好,态度决定成败。对于自身的成绩,连专科都没有上的话,读1+2 不失为一种好途径。读热门的专业或自己比较敢兴趣的专业,只要好好学读出来都有用的。
陈景润1+2=3的证明过程是什么?
陈氏定理是中国数学家陈景润于1966年发表 ,1973年公布详细证明方法。这个定理证明任何一个足够大的偶数都可以表示成一个素数和一个半素数的和,也就是我们通常所说的“1+2”。 1742年德国人哥德巴赫给当时住在俄国彼得堡的大数学家欧拉写了一封信,在信中提出两个问题:第一,是否每个大于4的偶数都能...
(1+2)什么意思
这是数学加法运算:1+2=3。这里的加法运算在括号内,具有优先计算的权利,比如(1+2)×3,虽然有乘法,但是括号的优先级高于乘法,先计算括号内在计算括号外。加法(通常用加号“+”表示)是算术的四个基本操作之一,其余的是减法,乘法和除法。 例如,在下面的图片中,共有三个苹果和两个苹果的组合...
1+2等于多少?
1+1=2就是数学当中的公理,在数学中是不需要证明的。又因为1+1=2是一切数学定理的基础,所以它也是无法用数学的方法证明的。 至于“1+1为什么等于2?”作为一个问题,没要求大家必须用数学的方法证明,其实只要说明为什么1+1=2就可以了,可以说这是定义,也可以说这是公理。不过用反证法还是可以证明的:假设1+1...
华罗庚是怎样证明出1+1=2的
很多人可能将“1+1”误认为是“1+1=2”,实际上,“1+1”指的是著名的数学难题——哥德巴赫猜想的一部分,其核心是任何大于2的偶数都可以表示为两个质数之和。这一猜想最初由德国数学家哥德巴赫提出,因此得名。尽管哥德巴赫猜想看似简单,但它的证明过程却异常复杂。至今,人类尚未完成对这一猜想...
1+2在什么情况下不等于3
答案是:“在算错的情况下”。解释分析:此题为一题脑筋急转弯题目,在正常算对的情况下,1+2就会等于3,而题目则问在什么情况下1+2不等于3,这里有两层问意,一种是询问1+2不等于3的方法,而另一种则是重在询问什么情况下,第二种更适合脑筋急转弯的回答,所以答案就是“在算错的情况下”...
世界上的四大数学难题是指哪四个?
1、立方倍积问题 立方倍积就是利用尺规作图作一个立方体,使其体积等于已知立方体的二倍,这个问题也叫倍立方问题,也称之为德里安问题、Delos问题。若已知立方体的棱长为1, 则立方倍积问题就可以转化为方程x³-2=0解的尺规作图问题。根据尺规作图准则,该方程之解无法作出。因此,立方倍积...