圆周率的计算方法是如何发展的?
在不同的历史时期,受制于生产力发展水平和科技发展水平,π 的计算方法、计算效率、准确度各不相同。圆周率(π)的计算方法的探索主要有实验时期、几何法时期、分析法时期、计算机时代。
1、实验时期——对圆周率的估算:
一块古巴比伦石匾(约产于公元前1900年至1600年)清楚地记载了圆周率 = 25/8 = 3.125。同一时期的古埃及文物,莱因德数学纸草书(Rhind Mathematical Papyrus)也表明圆周率等于分数16/9的平方,约等于3.1605。埃及人似乎在更早的时候就知道圆周率了。
英国作家 John Taylor (1781–1864) 在其名著《金字塔》(《The Great Pyramid: Why was it built, and who built it?》)中指出,造于公元前2500年左右的胡夫金字塔和圆周率有关。例如,金字塔的周长和高度之比等于圆周率的两倍,正好等于圆的周长和半径之比。公元前800至600年成文的古印度宗教巨著《百道梵书》(Satapatha Brahmana)显示了圆周率等于分数339/108,约等于3.139。
2、几何法时期——对圆周率的计算开始走向主动,并趋于科学:
(1)古希腊作为古代几何王国对圆周率的贡献尤为突出。
古希腊大数学家阿基米德(公元前287–212 年) 开创了人类历史上通过理论计算圆周率近似值的先河。阿基米德从单位圆出发,先用内接正六边形求出圆周率的下界为3,再用外接正六边形并借助勾股定理求出圆周率的上界小于4。接着,他对内接正六边形和外接正六边形的边数分别加倍,将它们分别变成内接正12边形和外接正12边形,再借助勾股定理改进圆周率的下界和上界。
他逐步对内接正多边形和外接正多边形的边数加倍,直到内接正96边形和外接正96边形为止。最后,他求出圆周率的下界和上界分别为223/71 和22/7, 并取它们的平均值3.141851 为圆周率的近似值。阿基米德用到了迭代算法和两侧数值逼近的概念,称得上是“计算数学”的鼻祖。
(2)中国古算书《周髀算经》(约公元前2世纪)的中有“径一而周三”的记载,意即取
汉朝时,张衡得出
即
(约为3.162)。这个值不太准确,但它简单易理解。
(3)公元263年,中国数学家刘徽用“割圆术”计算圆周率,他先从圆内接正六边形,逐次分割一直算到圆内接正192边形。他说“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”,包含了求极限的思想。
刘徽给出π=3.141024的圆周率近似值,刘徽在得圆周率=3.14之后,将这个数值和晋武库中汉王莽时代制造的铜制体积度量衡标准嘉量斛的直径和容积检验,发现3.14这个数值还是偏小。于是继续割圆到1536边形,求出3072边形的面积,得到令自己满意的圆周率
(4)公元480年左右,南北朝时期的数学家祖冲之进一步得出精确到小数点后7位的结果,给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率
和约率
密率是个很好的分数近似值,要取到
才能得出比
略准确的近似。
在之后的800年里祖冲之计算出的π值都是最准确的。其中的密率在西方直到1573年才由德国人奥托(Valentinus Otho)得到,1625年发表于荷兰工程师安托尼斯(Metius)的著作中,欧洲称之为Metius' number。
(5)约在公元530年,印度数学大师阿耶波多算出圆周率约为
婆罗摩笈多采用另一套方法,推论出圆周率等于10的算术平方根。
(6)阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。德国数学家鲁道夫·范·科伊伦(Ludolph van Ceulen)于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。
3、分析法时期——科学推演圆周率:
这一时期人们开始利用无穷级数或无穷连乘积求π,摆脱可割圆术的繁复计算。无穷乘积式、无穷连分数、无穷级数等各种π值表达式纷纷出现,使得π值计算精度迅速增加。
第一个快速算法由英国数学家梅钦(John Machin)提出,1706年梅钦计算π值突破100位小数大关,他利用了如下公式:
其中arctan x可由泰勒级数算出。类似方法称为“梅钦类公式”。
斯洛文尼亚数学家Jurij Vega于1789年得出π的小数点后首140位,其中只有137位是正确的。这个世界纪录维持了五十年。他利用了梅钦于1706年提出的数式。
到1948年英国的弗格森(D. F. Ferguson)和美国的伦奇共同发表了π的808位小数值,成为人工计算圆周率值的最高纪录。
4、计算机时代——科学高效计算圆周率:
电子计算机的出现使π值计算有了突飞猛进的发展。
1949年,美国制造的世上首部电脑-ENIAC(Electronic Numerical Integrator And Computer)在阿伯丁试验场启用了。次年,里特韦斯纳、冯纽曼和梅卓普利斯利用这部电脑,计算出π的2037个小数位。这部电脑只用了70小时就完成了这项工作,扣除插入打孔卡所花的时间,等于平均两分钟算出一位数。
五年后,IBM NORC(海军兵器研究计算机)只用了13分钟,就算出π的3089个小数位。科技不断进步,电脑的运算速度也越来越快,在60年代至70年代,随着美、英、法的电脑科学家不断地进行电脑上的竞争,π的值也越来越精确。在1973年,Jean Guilloud和Martin Bouyer以电脑CDC 7600发现了π的第一百万个小数位。
在1976年,新的突破出现了。萨拉明(Eugene Salamin)发表了一条新的公式,那是一条二次收敛算则,也就是说每经过一次计算,有效数字就会倍增。高斯以前也发现了一条类似的公式,但十分复杂,在那没有电脑的时代是不可行的。这算法被称为布伦特-萨拉明(或萨拉明-布伦特)演算法,亦称高斯-勒让德演算法。
1989年美国哥伦比亚大学研究人员用克雷-2型(Cray-2)和IBM-3090/VF型巨型电子计算机计算出π值小数点后4.8亿位数,后又继续算到小数点后10.1亿位数。2010年1月7日——法国工程师法布里斯·贝拉将圆周率算到小数点后27000亿位。2010年8月30日——日本计算机奇才近藤茂利用家用计算机和云计算相结合,计算出圆周率到小数点后5万亿位。
2011年10月16日,日本长野县饭田市公司职员近藤茂利用家中电脑将圆周率计算到小数点后10万亿位,刷新了2010年8月由他自己创下的5万亿位吉尼斯世界纪录。56岁的近藤茂使用的是自己组装的计算机,从10月起开始计算,花费约一年时间刷新了纪录。
扩展资料:
1、国际圆周率日:
2011年,国际数学协会正式宣布,将每年的3月14日设为国际数学节,来源则是中国古代数学家祖冲之的圆周率。
国际圆周率日可以追溯至1988年3月14日,旧金山科学博物馆的物理学家Larry Shaw,他组织博物馆的员工和参与者围绕博物馆纪念碑做3又1/7圈(22/7,π的近似值之一)的圆周运动,并一起吃水果派。之后,旧金山科学博物馆继承了这个传统,在每年的这一天都举办庆祝活动。
2009年,美国众议院正式通过一项无约束力决议,将每年的3月14日设定为“圆周率日”。决议认为,“鉴于数学和自然科学是教育当中有趣而不可或缺的一部分,而学习有关π的知识是一教孩子几何、吸引他们学习自然科学和数学的迷人方式……π约等于3.14,因此3月14日是纪念圆周率日最合适的日子。”
2、圆周率在各学科中的应用:
(1)几何:
(2)代数:
π是个无理数,即不可表达成两个整数之比,是由瑞士科学家约翰·海因里希·兰伯特于1761年证明的。 1882年,林德曼(Ferdinand von Lindemann)更证明了π是超越数,即π不可能是任何整系数多项式的根。
圆周率的超越性否定了化圆为方这古老尺规作图问题的可能性,因所有尺规作图只能得出代数数,而超越数不是代数数。
(3)数论:
两个任意自然数是互质的概率是
。
任取一个任意整数,该整数没有重复质因子的概率为
一个任意整数平均可用
个方法写成两个完全数之和。
(4)概率论:
设我们有一个以平行且等距木纹铺成的地板,随意抛一支长度比木纹之间距离小的针,求针和其中一条木纹相交的概率。这就是布丰投针问题。1777 年,布丰自己解决了这个问题——这个概率值是 1/π。
(5)统计学:
正态分布的概率密度函数:
(6)物理学:
海森堡不确定性原理:
相对论的场方程:
参考资料来源:百度百科 - 圆周率
你是否需要了解?
圆周率是怎么算出来的(圆周率计算过程)
梅钦因此把值计算到了小数点后100位。以后又发现了许多类似的公式,的计算精度也越来越高。1874年,英国的谢克斯花15年时间将计算到了小数点后707位,这是人工计算值的最高纪录,被记录在巴黎发现宫的大厅。可惜后来发现其结果从528位开始出错了。电子计算机出现后,人们开始利用它来计算圆周率的数值,...
圆周率的历史发展
阿基米德的工作开创了迭代算法和双侧数值逼近的先河。三、分析法时期 在这一时期,数学家们开始运用无穷级数或无穷连乘积来求解π,从而避免了割圆术的复杂计算。π的各种表达式,如无穷乘积式、无穷连分数和无穷级数等,被相继提出,极大地提高了π值的计算精度。Jurij Vega在1789年计算出π的小数点后140...
圆周率如何算出来的
类似方法称为“梅钦类公式”。1873 年另一位英国数学家尚可斯将π值计算到小数点后707位,可惜他的结果从528位起是错的。到1948年英国的弗格森和美国的伦奇共同发表了π的808位小数值,成为人工计算圆周率值的最高纪录。计算机时代电子计算机的出现使π值计算有了突飞猛进的发展。1949年,美国制造的...
圆周率的发展是怎样的?
由于电子计算机的问世,圆周率计算的精确性的纪录一个接一个地被打破。就目前所知,人们已经计算到小数点后面100万位,这是由两位法国女数学工作者吉劳德与波叶算出的。1973年5月24日,她们利用7600CDC型电子计算机完成了这一工作,但直到同年9月才得到证实。所公布的100万位的圆周率的值是3....
圆周率的发展历史
圆周率的发展历史经历了古代的近似方法、古希腊的逼近方法、数学推导的进展以及计算机计算的突破。1、古代近似方法 在古代,人们对于圆周率并没有准确的计算方法,所以常常使用近似值来进行计算。2、古希腊的逼近方法 古希腊的数学家阿基米德在公元前250年左右使用了割圆术来逼近圆周率。3、数学推导的进展 在...
圆周率是怎样推论出来的?是无限的吗?
π是一个非常重要的常数.一位德国数学家评论道:"历史上一个国家所算得的圆周率的准确程度,可以做为衡量这个这家当时数学发展水平的重要标志."古今中外很多数学家都孜孜不倦地寻求过π值的计算方法.公元前200年间古希腊数学家阿基米德首先从理论上给出π值的正确求法.他用圆外切与内接多边形的周长从大...
圆周率公式
圆周率的计算方法经历了从几何逼近到数学公式的发展。最初,通过多边形逼近圆的周长,如阿基米德、刘徽和鲁道夫等人的工作,尽管精确度逐步提升,但效率低下。如今,数学家们找到了更为高效的计算公式。马青公式是英国数学家约翰·马青于1706年发现的,利用反正切运算,能计算出1.4位的精度,便于计算机编程...
圆周率是如何产生的?
▲圆周率的发展史 在历史上,有不少数学家都对圆周率作出过研究,当中著名的有阿基米德(Archimedes of Syracuse)、托勒密(Claudius Ptolemy)、张衡、祖冲之等。他们在自己的国家用各自的方法,辛辛苦苦地去计算圆周率的值。下面,就是世上各个地方对圆周率的研究成果。亚洲 中国:魏晋时,刘徽曾用使正多边形的边...
圆周率是怎么算出来的?
刘徽割圆术 200多年之后祖冲之也沿用了刘徽的算法,将圆周率的范围缩小到3.1415926至3.1415927之间,达到了小数点的后7位精度,这个记录在全世界保持了近一千年。随着数学方法的不断发展,人们开始摆脱繁琐的计算方式,利用无穷乘积,无穷级数等表达式计算π值。在电子计算机出现,更是让圆周率计算突飞猛进的...
圆周率的历史与发现
【圆周率的计算方法】古人计算圆周率,一般是用割圆法。即用圆的内接或外切正多边形来逼近圆的周长。Archimedes用正96边形得到圆周率小数点后3位的精度;刘徽用正3072边形得到5位精度;Ludolph Van Ceulen用正262边形得到了35位精度。这种基于几何的算法计算量大,速度慢,吃力不讨好。随着数学的发展,...