有关数学集合的故事 关于数学的一些有趣的小故事
1.符号“+”“-”是五百年前一位德国人最先使用的。当时他们并不表示“加上”“减去”。知道三百多年前才正式用来表示“加上”“减去”。
2.“七巧板”是我国古代的一种拼板玩具,有七个块可以拼成一个大正方形的薄板组成,拼出来的图案变化万千。后来传到国外叫做“唐图”。“七巧板”流传到今天,成为人们喜爱的一种智力玩具。
3.传说早在四五千年前,我们的祖先就用一种滴水的器具来计时,名叫刻漏。
4.乘号“×”是三百多年前一位英国数学家最先使用的。因为乘法是一种特殊的加法,所以他把加号斜过来表示。
5.公元前46年,罗马统帅儒略· 恺撒指定历法。由于他出生在7月,为了表示他的伟大,决定将7月改为“儒略月”,连同所有的单月都规定为31天,双月为30天。这样一年多出一天,2月是古罗马处死犯人的月份,为了减少处死的人数,将2月减少1天,为29天。
6.小方是一个木匠,但他很傲慢,有一天,师傅问他:“桌子有4个角,我砍去一个,还剩几个?”小芳说4-1=3,三个。师傅告诉他,有5个
7、数字趣联
宋代大诗人苏东坡年轻时与几个学友进京考试.他们到达试院时为时已晚.考官说:"我出一联,你们若对得上,我就让你们进考场."考官的上联是:一叶孤舟,坐了二三个学子,启用四桨五帆,经过六滩七湾,历尽八颠九簸,可叹十分来迟.
苏东坡对出的下联是:十年寒窗,进了九八家书院,抛却七情六欲,苦读五经四书,考了三番两次,今日一定要中.
考官与苏东坡都将一至十这十个数字嵌入对联中,将读书人的艰辛与刻苦情况描写得淋漓尽致.
8、点错的小数点
学习数学不仅解题思路要正确,具体解题过程也不能出错,差之毫厘,往往失之千里.
美国芝加哥一个靠养老金生活的老太太,在医院施行一次小手术后回家.两星期后,她接到医院寄来的一张帐单,款数是63440美元.她看到偌大的数字,不禁大惊失色,骇得心脏病猝发,倒地身亡.后来,有人向医院一核对,原来是电脑把小数点的位置放错了,实际上只需要付63.44美元.
点错一个小数点,竟要了一条人命.正如牛顿所说:"在数学中,最微小的误差也不能忽略.
9、二十一世纪从哪年开始?
世纪是计算年代的单位,一百年为一个世纪.
第一世纪的起始年和末尾年,分别是公元1年和公元100年.常见的错误是有人把起始年当作是公元零年,这显然不符合逻辑和我们的习惯,因为在一般情况下,序数的计算是从“1”开始的,而不是从“0”开始的。而正是这个理解上的错误,所以才导致了世纪末尾年为公元99年的错误认识,这也是错把1999年当作是二十世纪末尾年,错把2000年当作是二十一世纪起始年的原因.因为公元计数是序数,所以应该从“1”开始,21世纪的第一年是2001年.
10、蒲丰试验
一天,法国数学家蒲丰请许多朋友到家里,做了一次试验.蒲丰在桌子上铺好一张大白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的一半.蒲丰说:“请大家把这些小针往这张白纸上随便仍吧!”客人们按他说的做了。
蒲丰的统计结果是:大家共掷2212次,其中小针与纸上平行线相交704次,2210÷704≈3.142。蒲丰说:“这个数是π的近似值。每次都会得到圆周率的近似值,而且投掷的次数越多,求出的圆周率近似值越精确。”这就是著名的“蒲丰试验”。
11、数学魔术家
1981年的一个夏日,在印度举行了一场心算比赛。表演者是印度的一位37岁的妇女,她的名字叫沙贡塔娜。当天,她要以惊人的心算能力,与一台先进的电子计算机展开竞赛。
工作人员写出一个201位的大数,让求这个数的23次方根。运算结果,沙贡塔娜只用了50秒钟就向观众报出了正确的答案。而计算机为了得出同样的答数,必须输入两万条指令,再进行计算,花费的时间比沙贡塔娜要多得多。
这一奇闻,在国际上引起了轰动,沙贡塔娜被称为“数学魔术家”。
12、工作到最后一天的华罗庚
华罗庚出生于江苏省,从小喜欢数学,而且非常聪明。1930年,19岁的华罗庚到清华大学读书。华罗庚在清华四年中,在熊庆来教授的指导下,刻苦学习,一连发表了十几篇论文,后来又被派到英国留学,获得博士学位。他对数论有很深的研究,得出了著名的华氏定理。他特别注意理论联系实际,走遍了20多个省、市、自治区,动员群众把优选法用于农业生产。
记者在一次采访时问他:“你最大的愿望是什么?”
他不加思索地回答:“工作到最后一天。”他的确为科学辛劳工作的最后一天,实现了自己的诺言。
中国数学资源网,里有古今数学史
寻找数学的基础:集合论的创立(1)
集合论的创立者格奥尔格·康托尔,1845年3月3日出生于俄国圣彼得堡(前苏联列宁格勒)一个商人家庭。他在中学时期就对数学感兴趣。1862年,他到苏黎世上大学,1863年转入柏林大学。
当时柏林大学正在形成一个数学教学与研究的中心,他在1867年的博土论文中就已经反映出“离经叛道”的观点,他认为在数学中提问的艺术比起解法来更为重要。的确,他原来的成就并不总是在于解决间题,他对数学的独特贡献在于他以特殊提问的方式开辟了广阔的研究领域。他所提出的问题一部分被他自己解决,一部分被他的后继者解决,一些没有解决的问题则始终支配着某一个方向的发展,例如著名的连续统假设。
1869年康托尔取得在哈勒大学任教的资格,不久就升为副教授,并在1879年升为教授,他一直到去世都在哈勒大学工作。哈勒是一个小地方,而且薪金微薄。康托尔原来希望在柏林找到一个薪金较高、声望更大的教授职位,但是在柏林,那位很有势力而且又专横跋扈的克洛耐克处处跟他为难,阻塞了他所有的道路。原因是克洛耐克对于他的集合论,特别是他的“超穷数”观点持根本否定的态度。由于用脑过度和精神紧张,从1884年起,他不时犯深度精神抑郁症,常常住在疗养院里。1918年1月6日他在哈勒大学附近的精神病院中去世。
集合论的诞生可以说是在1873年年底。1873年11月,康托尔在和戴德金的通信中提出了一个问题,这个问题使他从以前关于数学分析的研究转到一个新方向。他认为,有理数的集合是可以“数”的,也就是可以和自然数的集合成一对一的对应。但是他不知道,对于实数集合这种一对一的对应是否能办到。他相信不能有一对一的对应,但是他“讲不出什么理由”。
不久之后,他承认他“没有认真地考虑这个问题,因为它似乎没有什么价值”。接着他又补充一句,“要是你认为它因此不值得再花费力气,那我就会完全赞同”。可是,康托尔又考虑起集合的映射问题来。很快,他在1873年12月7日又写信给戴德金,说他已能成功地证明实数的“集体”是不可数的了,这一天可以看成是集合论的诞生日。
戴德金热烈的祝贺了康托尔取得的成功。其间,证明的意义也越来越清楚。因为康托尔还成功地证明代数数的集合也是可数的。所谓代数数就是整系数代数方程的根,而象π与e这样的不能成为任何整系数代数方程的根的数,则称为超越数。
早在1847年,刘维尔就通过构造的方法(当时大家认为是唯一可接受的方法)证明了超越数的存在,也就是具体造出超越数来。可是,康托尔1874年发表的有关集合论的头一篇论文《论所有实代数集合的一个性质》断言,所有实代数数的集合是可数的,所有实数的集合是不可数的。因此,非代数数的超越数是存在的,并且其总数要比我们熟知的实代数数多得多,也就是说超越数的集合也是不可数的。
寻找数学的基础:集合论的创立(2)
有限和无穷的这个特点可以从下面的小故事反映出来,这个故事据说是希尔伯特说的。
某一个市镇只有一家旅馆,这个旅馆与通常旅馆没有不同,只是房间数不是有限而是无穷多间,房间号码为1,2,3,4,……我们不妨管它叫希尔伯特旅馆。这个旅馆的房间可排成一列的无穷集合(1,2,3,4,…),称为可数无穷集。
有一天开大会,所有房间都住满了。后来来了一位客人,坚持要住房间。旅馆老板于是引用“旅馆公理”说:“满了就是满了,非常对不起!”。正好这时候,聪明的旅馆老板的女儿来了,她看见客人和她爸爸都很着急,就说:“这好办,请每位顾客都搬一下,从这间房搬到下一间”。于是1号房间的客人搬到2号房间,2号房间的客人搬到3号房间……依此类推。最后1号房间空出来,请这位迟到的客人住下了。
第二天,希尔伯特旅馆又来了一个庞大的代表团要求住旅馆,他们声称有可数无穷多位代表一定要住,这又把旅馆经理难住了。老板的女儿再一次来解围,她说:“您让1号房间客人搬到2号,2号房间客人搬到4号……,k号房间客人搬到2k号,这样,1号,3号,5号,……房间就都空出来了,代表团的代表都能住下了。”
过一天,这个代表团每位代表又出新花招,他们想每个人占可数无穷多间房来安排他们的亲戚朋友,这回不仅把老板难住了,连女儿也被难住了。聪明的女儿想了很久,终于也想出了办法。(因为比较繁琐,这里不详细介绍了)
希尔伯特旅馆越来越繁荣,来多少客人都难不倒聪明的老板女儿。后来女儿进了大学数学系。有一天,康托尔教授来上课,他问:“要是区间[0,1]上每一点都占一个房间,是不是还能安排?”她绞尽脑汁,要想安排下,终于失败了。康托尔教授告诉她,用对角线方法证明一切想安排下的方案都是行不通的。
由康托尔的定理,可知无穷集合除了可数集台之外还有不可数集合,可以证明:不可数集合的元素数目要比可数集合元素数目多得多。为了表示元素数目的多少,我们引进“基数”也称“势”的概念,这个概念是自然数的自然推广。可以与自然数集合N一一对应的所有集合的共同性质是它们都具有相同的数目,这是最小的无穷基数记做ω。(ω是希伯来文字母第一个,读做阿列夫)。同样,连续统(所有实数或[0,1]区间内的所有实数集合)的基数是C.康托尔还进一步证明,C=2ω。,问题是C是否紧跟着ω。的第二个无穷基数呢?这就是所谓连续统假设。
1796年的一天,一个青年开始做导师留的数学题。
前两道题完成顺利。只剩第三道题:要求只用尺规,画出一个正17边形。
这位青年绞尽脑汁,但是毫无进展。
困难激起了斗志。他终于完成了这道难题。
导师看到学生的作业惊呆了。他激动地说:“你知道吗?你解开了遗留两千多年的数学难题!”
原来,导师因为失误,把这道题目的纸条交给学生。
每当回忆时,这位青年总是说:“如果有人告诉我,这是一道有两千多年历史的数学难题,我可能永远也没有信心将它解出来。”
这位青年就是数学王子高斯。
参考资料:呵呵
故事名:数学集合
故事内容:
数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合数学集合
结果: 数学集合了。
一天,萨维尔村理发师挂出了一块招牌:“村里所有不自己理发的男人都由我给他们理发,我也只给这些人理发。”于是有人问他:“您的头发由谁理呢?”理发师顿时哑口无言。
因为,如果他给自己理发,那么他就属于自己给自己理发的那类人。
但是,招牌上说明他不给这类人理发,因此他不能自己理。
如果由另外一个人给他理发,他就是不给自己理发的人。但是,招牌上明明说他要给所有不自己理发的男人理发,因此,他应该自己理。由此可见,不管作怎样的推论,理发师所说的话总是自相矛盾的。
这是一个著名的悖论,称为“罗素悖论”。这是由英国哲学家罗素提出来的,他把关于集合论的一个著名悖论用故事通俗地表述出来。
1874年,德国数学家康托尔创立了集合论,很快渗透到大部分数学分支,成为它们的基础。到19世纪末,全部数学几乎都建立在集合论的基础之上了 。就在这时 ,集合论中接连出现了一些自相矛盾的结果,特别是1902年罗素提出的理发师故事反映的悖论,它极为简单、明确、通俗。于是,数学的基础被动摇了,这就是所谓的第三次“数学危机”。
此后,为了克服这些悖论,数学家们做了大量研究工作,由此产生了大量新成果,也带来了数学观念的革命。
你是否需要了解?
数学的趣味小故事
小故事是一种篇幅短小,故事情节简单而又富于哲理的故事,因其每个故事都能给人以启迪,成功做人之道而受到广大读者特别是在校学生的喜爱。下面是我整理的关于数学的趣味小故事(通用20篇),一起来看看吧 数学的趣味小故事 篇1 华罗庚上中学时,在一次数学课上,老师给同学们出了一道著名的难题:“有一个数,3个3个地数...
数学名人故事
3.德国著名大科学家高斯(1777~1855)出生在一个贫穷的家庭。高斯在还不会讲话就自己学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。 长大后他成为当代最杰出的天文学家、数学家。他在物理的电磁学方面有一些贡献,现在电磁学的一个单位就是用他的名字命名。数学家们则称呼他...
关于数学小故事(集锦6篇)
关于数学小故事(1)在一次有趣的数学谜题中,有三位客人在旅店住宿,每人每天价格为10元。每位客人支付了10元,总共支付了30元给老板。后来老板决定优惠5元,让服务员退还给客人。然而,服务员贪污了2元,剩下3元平分给每位客人,每人退还了1元。这样一来,每位客人实际消费了9元,三位客人总共支付...
数学故事演讲稿5分钟
经济学中的数学模型帮助预测市场趋势。因此,数学不仅是一门学科,更是推动现代社会进步和发展的关键。结语 数学是一门充满深度和广度的学科,它不仅仅是一堆公式和数字的集合,更是一个充满惊喜和探索的世界。通过了解数学的故事、奇迹和发现,我们能够更好地欣赏和理解这个古老而又永恒的学科。
趣味数学故事100篇
趣味数学故事100篇如下:1、数学天才的蛋糕 有一天,数学天才和他的朋友们一起庆祝他的生日。他们决定将蛋糕平分成相等的部分,但数学天才提出了一个有趣的问题:如果蛋糕上有17个蜡烛,他们如何切割蛋糕,使得每个人都得到一个完整的蜡烛?经过一番思考,他们将蛋糕切成16个部分,每个人得到一个蜡烛,并...
数学小故事
短的数学小故事: 一、零的故事 罗马数字是用几个表示数的符号,按照一定规则,把它们组合起来表示不同的数目。在这种数字的运用里,不需要“0”这个数字。当时,罗马帝国有一位学者从印度记数法里发现了“0”这个符号。他发现,有了“0”,进行数学运算方便极了,还把印度人使用“0”的方法向大家做了介绍。 这件...
关于数学小故事有哪些简短
阿基米德对数学的热爱和对知识的追求,激励着后人继续探索和发现。在追求知识的道路上,我们应如阿基米德一般,以信念为罗盘,以执著和勇毅为双浆,不断追求和探索。面对知识的海洋,我们应该坚信积累与勤奋的力量,相信知识可以引领我们远航。阿基米德的故事告诉我们,只要我们持之以恒,就能够创造出属于自己...
数学故事心得300字左右
在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。 关于数学的故事300字 到处都有映射(高中数学必修1讲到映射的概念) 小孩子开始学说话的时候,往往有一个重大的发现:原来世界上万物都有名称。于是,他产生了强烈的...
帮忙找一些数学小故事,急急急
因此,对于一个给定的集合,问是否属于它自己是有意义的。但对这个看似合理的问题的回答却会陷入两难境地。如果S属于S,根据S的定义,S就不属于S;反之,如果S不属于S,同样根据定义,S就属于S。无论如何都是矛盾的。小朋友你们可知道数学天才高斯小时候的故事呢?高斯念小学的时候,有一次在老师教完...
有关数学的故事
除了在数学领域取得卓越成就外,祖冲之还对其他领域做出了重要贡献。他是一位卓越的天文学家,对天文现象有着深入的研究。他的数学知识和研究成果在天文领域也得到了广泛应用。祖冲之的故事不仅展示了他的智慧和才华,更展示了数学的魅力和价值。他的成就不仅是中国数学史上的骄傲,也是世界数学史上的重要...